
SQL

Structured Query Language (SQL) is categorized into:
1. DML Data Manipulation Language

INSERT, DELETE, UPDATE,

2. Query (DML)
SELECT

3. DDL Data Definition Language
CREATE, DROP, ALTER, RENAME, TRUNCATE

4. DCL Data Definition Language
GRANT, DENY, REVOKE

5. Transaction
COMMIT, ROLLBACK, SAVEPOINT

DML
Example:
SELECT "Field (Attributes)"
FROM "TABLE"

SELECT: Chooses the field
FROM: Determines the table
DISTINCT: Eliminates duplication in the resulted query
ALL: Allows duplication in the resulted query
AS: Shows the field name as the name that you put after it.

Example:
SELECT ALL Emp-name As Name,

DISTINCT emp-address, Salary,
Salary * 12 AS Yearly

FROM Employee

Math Query:
You can use the math operators (+ - * /) with the SELECT statement

Example:
SELECT Amount, Amount x 0.07 AS Discount,

Amount – Amount x 0.07 AS Total
FROM Loan

* : Retrieving all fields of a table
WHERE: Displays requested data with some terms and conditions using:
 a. Comparison Operators (< <= > >= <>),
 b. Logical Operators AND, OR, NOT
 c. String Operators LIKE, NOT LIKE, BETWEEN,
 NOT BETWEEN, IN, NOT IN,
 (% = String, _ = Character)
LIKE: For detailed string comparison.
NOT LIKE: For detailed string comparison exception.
BETWEEN: Specifies the area of constraint
NOT BETWEEN: Specifies the area of "Except"
IN: Chooses the specified records from the parentheses after it.
NOT IN: Chooses the specified records from anything but the
 parentheses after it.

Example:
SELECT *
FROM Loan
WHERE Amount BETWEEN 0 AND 500

AND Name LIKE "Ba_h%"

 || : Concatenation
 . : Object Indicator
ORDER BY: Orders the records according to a specified field
 (ASC: Ascending is default– DESC: Descending)

Example:
SELECT EmpName || ' ' || Sal || ' ' || Employee.EID
FROM Employee, Department
WHERE EmpName IN ('Ali', 'Bassem', 'Ahmad')

AND Employee.EID = Department.EID
ORDER BY EmpName ASC

Set Operations

EXCEPT: to differentiate queries
EXCEPT ALL: to differentiate queries (allowing duplication)
UNION: to union queries
UNION ALL: to union queries (allowing duplication)
INTERSECT: to intersect queries
INTERSECT ALL: to intersect queries (allowing duplication)

Example:
(SELECT DISTINCT Customer-Name
FROM Depositor)
EXCEPT
(SELECT Customer-Name
FROM Borrower)

Aggregate Functions (Group Functions)
Functions that take a group of values and returns one value
SUM – AVG – MAX – MIN – COUNT

SUM Gets the sum of record values (numeric only)
AVG Gets the average of record values (numeric only)
MAX Gets the maximum of record values
MIN Gets the minimum of record values
COUNT Counts records

Example:
SELECT SUM (Balance)
FROM Account

GROUP BY: Groups the fields in a particular field name
HAVING: Used with aggregation functions. Works like WHERE.

Note:
1. HAVING always comes after GROUP BY if necessary, never before.
2. HAVING always comes with GROUP BY, not WHERE.
3. With aggregate functions, we always use HAVING, not WHERE.

Example:
SELECT Branch-name, SUM (balance)
FROM Account
GROUP BY Branch-Name
HAVING SUM (Balance) >= 10,000

IS NULL To check if the value of a record is Null.
IS NOT NULL To check if the value of a record is not Null

Usual Query Statements Succession:
SELECT Fields name
FROM Table Name
WHERE Condition
GROUP BY Fields
HAVING Condition
ORDER BY Fields

Example:
SELECT LID, Amount
FROM Loan
WHERE Amount IS Null

Nested SQL:
SELECT CName
FROM Depositor
WHERE CName IN (SELECT CName

FROM Borrower)

(Very much like the INTERSECT. If we use NOT IN, it becomes like EXCEPT)

INSERT INTO Student (SID, SName, Address)
Values (13, "Nadim", "Abdoon")

DELETE FROM Depositor
WHERE CID = 43

UPDATE Account
SET Balance = 1.06 x balance
WHERE Balance > 10,000

INSERT: It is applied over one relation to insert only one row
DELETE: It is applied over one relation to insert one or more rows
UPDATE: It is applied over one relation to update one or more fields
SET: Specifies the data to be updated by the UPDATE statement

DDL

Domain Types:
 char (n) fixed length
 varchar2 (n) variable length
 number (p,d)
 Int, TinyInt, SmallInt, BigInt
 date
 Money
 Raw
 Long Raw
 BLOB

Integrity Constraints:
 Primary Key
 Not Null
 Check (P)

Example:
Check (balance >= 0): withdrawing from the account must be greater than $0

CREATE Creates tables, with the help of the TABLE statement
DROP Drops tables or fields
ALTER Alters table structure, with the help of the TABLE statement
MODIFY Modifies fields in a table after using ALTER
ADD Adds fields to a table after using ALTER

PRIMARY KEY Sets the primary key of the table with the help of REFERENCE
FOREIGN KEY Sets the foreign key of the table with the help of REFERENCE
UNIQUE Makes one of the fields a unique key
CHECK Sets a condition on a certain field when creating a table
CONSTRAINT Sets a constraint on a certain field when creating a table
REFERENCE To refer to a particular table
NOT NULL To force the user to enter a value

TRUNCATE Frees the hard disk from an existing useless disk space.

Note:
The difference between the Primary Key and Unique is that both must not contain
repetition

CREATE TABLE Old-Sales (SalesID BigInt, SalesAmount Money)

CREATE TABLE Student
(SID Number Primary Key,
 Name char (50) NOT Null,
 Address varchar2 (80))

Example:
CREATE TABLE Branch
(Branch-name char(20),
Branch-city varchar(20),
Asset INTEGER,
CONSTRAINT C1 PRIMARY KEY (Branch-name),
Check (Asset >= 0)

CREATE TABLE Loan
(LID Number (4) Primary key,
Amount Number (5,2) NOT NULL,
Branch-name varchar (25) NOT NULL,
FOREIGN KEY (Branch-name) REFERENCE Branch)

Referential Integrity Constraints:
PRIMARY KEY Can not be Null
FOREIGN KEY REFERENCE table-name Can be Null
UNIQUE Can be Null
CHECK CHECK (attribute-list & Condition)

DROP TABLE Student

(Must delete all relationships with the table before deleting it)

ALTER TABLE Branch
(ADD Asset Number (10, 2) NOT Null
MODIFY Branch-name varchar2 (155)
DROP Location
ENABLE CONSTRAINT Banking-branch-pk)

CONSTRAINT Constraint-name PRIMARY KEY (Attribute List)

TRUNCATE TABLE Student

FOREIGN KEY (SID) REFERENCE Student
[ON DELETE CASCADE] Delete data in related PK & FK
[ON UPDATE CASCADE] Update data in related PK & FK

TABLE It is used to create, alter or drop tables
VIEW It is a special way to view data in a specific method
SYNONYM To make a copy from a certain table with a different name
SEQUENCE Gives an instance of a table for a certain field a specific value.

Example:
CREATE VIEW V1
SELECT OName, OCode
FROM Operation
WHERE Cost < 1000

SELECT *
FROM V1

SELECT OName
FROM V1

DROP VIEW V1

Example:
CREATE SYNONYM Oper FOR Operation

SELECT DName
FROM Doctor
WHERE D.Sal > 600

DROP SYNONYM Oper

Example:
CREATE SEQUENCE Seq1 START WITH 56

INSERT INTO Doctor

VALUES (Seq1.nextval, 'Dr Hisham', '07512', 300)

SELECT Seq1.curval, Seq1.nextval
FROM Dual

DCL

GRANT: Grants access to a user to specific data
DENY: Denies access of a user to specific data
REVOKE: Removes any GRANT's or DENY's from a specific user.

GRANT CREATE ROLE TO Public

GRANT INSERT ON Operation TO R1

REVOKE INSERT ON Operation TO R1

GRANT EXECUTE ON Get_Name TO Student1

TL

COMMIT Saves the current situation of the data (all data)
ROLLBACK Retrieves the situation of all data from the last COMMIT done
SAVEPOINT Saves the situation of the data as a point for recovery purposes

SQL Language Basics
Naming Objects

- Avoid a name that matches a reserved keyword
- When naming a name with a space, use the square brackets

(e.g. [Order Details]) in SQL statements (whereas "Order" is a reserved
keyword)

Comment
Block Comment
/*
…….
*/

Inline Comment
-- This is an inline comment

Variables
DECLARE @MyVar TinyInt

SET @MyVar = 5
SELECT @MyVar AS MyVariableValue

Batches
CREATE VIEW SalesAug
AS
SELECT *
FROM Orders
WHERE Month (Order Date) = 8

GO

CREATE VIEW SalesSept
AS
SELECT *
FROM Orders
WHERE Month (Order Date) = 9

NOTE: GO statement prevents an error from occurring by executing the first
CREATE then the second CREATE, instead of both of them at once.

SQL Advanced Features

Expressions
+ - * / AND OR NOT = < > LIKE +

SELECT OrderID, (Unit-Price * Quantity) AS Total-Price
FROM [Order Details]

SELECT *
FROM Customers
WHERE City = 'London' OR Country = 'Germany'

SELECT *
FROM Customers
WHERE Company-Name LIKE 'A%'

Exec
DECLARE @MyString varchar(20)
SET @ MyString = 'Customer'
EXEC ('SELECT * FROM' + @MyString)

Built-in Functions
RIGHT, LEFT, SUBSTRING
AVG, MIN, MAX, SUM, COUNT
@@version, DB_Name ()

SELECT Company-Name, LEFT (Compane-Name, 4) AS CoID
FROM Customers

SELECT Company-Name, RIGHT (Compane-Name, 4) AS CoID
FROM Customers

SELECT Company-Name, SUBSTRING (Compane-Name, 2, 2) AS CoID
FROM Customers

SELECT @@VERSION

SELECT DB_Name ()

Control Flow
IF..ELSE WHILE CASE

If..Else
DECLARE @MyVar SmallInt
SET @MyVar = 3

IF @MyVar = (9/3)
BEGIN

SELECT * FROM Products
END

ELSE
BEGIN

SELECT * FROM Categories
END

While
WHILE (SELECT MIN (Unit-Price) FROM Products) > 1

BEGIN
UPDATE Products SET Unit-Price = (Unit-Price / 2)
PRINT 'New prices have been set'

END

Case
SELECT Product-Name, Supplier-ID, CASE Discontinued

WHEN 1 THEN 'Yes'
WHEN 0 THEN 'No'

END AS Discontinued
FROM Products

	SQL
	DML
	DDL
	DCL
	TL
	SQL Language Basics
	SQL Advanced Features

